Фиг. 228. Захоронение в грунт высокоактивных жидких отходов.
Показано перемещение в почвах пустыни основных изотопов.
Такие участки должны постоянно находиться под наблюдением, чтобы исключить возможность заражения поверхностных и грунтовых вод н воздуха (фиг. 228). Позже мы рассмотрим требования к суше и воде в месте расположения атомной станции и пере-' работки ее отходов.
До тех пор пока делящиеся материалы (уран, торий, плутоний и др.) будут использоваться в качестве источника энергии, факторами, лимитирующими использование теоретически «неисчерпаемых» источников атомной энергии, будут оставаться большие количества отходов от продуктов деления (те же самые радиоактивные изотопы, которые присутствуют в осадках) плюс следовые количества расщепляемых материалов. Будет накапливаться очень много «мегакюри» радиоактивных изотопов с большими периодами полураспада. Ожидается, что используемые сейчас реакторы в ближайшие 15—20 лет будут заменены реакторами-размножителями, в которых при каталитическом сжигании урана-238, тория-232 и, может быть, лития-6 будет происходить самовосстановление делящихся материалов. При этом значительно снизятся потребности в горючем, но это не решит проблемы уничтожения отходов. Предполагается, что когда-нибудь станет возможным использование энергии синтеза. С продуктами деления тогда было бы покончено, но, увеличилось бы количество веществ с наведенной активностью, в частности трития, который мог бы загрязнить гидрологический цикл в глобальном масштабе. Паркер (1968) подсчитал, что «если бы все атомные станции работали на реакции термоядерного синтеза, то в результате образовавшегося в энергетике трития доза загрязнения для всего земного шара к 2000 г. достигла бы недопустимого уровня!» Дополнительное обсуждение проблемы радиоактивных отходов.
Если бы радиоактивные отходы не лимитировали использования атомной энергии, то лимитирующим фактором стали бы тепловые отходы или, что более вероятно, сочетание тех и других отходов создавало бы предельные ограничения со стороны загрязнения. То, что сейчас называют тепловым загрязнением, будет „становиться все более серьезной проблемой, так как, согласно второму закону термодинамики, при любом превращении одной формы энергии в другую в качестве побочного продукта образуется бесполезное тепло. Переход от минерального горючего к атомному до некоторой степени уменьшает загрязнение воздуха, но при этом возрастает загрязнение воды, особенно тепловое. Так, при производстве 1 кВт-ч электроэнергии на тепловой станции тепловые отходы в атмосферу и в воду, используемую для охлаждения, составляют соответственно 400 и 135 искал, а на современной
атомной электростанции — 130 и 1900 ккал. Таким образом, атомная электростанция средних размеров, производящая 3000 МВт электроэнергии, производит также тепловые отходы с интенсивностью свыше 5-Ю9 ккал/ч.
Охлаждающая способность поверхности воды варьирует в зависимости от ветра и температуры воды от 7 до 36 ккал в 1 ч на 1 м2 на каждый градус (1 °С) разницы между температурой воды и воздуха. Следовательно, для рассеяния тепла требуется большая водная поверхность, что-то порядка 0,6 га на 1 МВт в местностях с умеренным климатом, или 1800 га на электростанцию мощностью 3000 МВт. В одном отчете1 в 1970 г. рекомендовалось каждой атомной электростанции мощностью 2400 МВт отводить 450 га для самой станции и хранения радиоактивных отходов и около 3000 га водной поверхности для охлаждения. Соответственно если выбрать второй вариант стратегии уничтожения отходов, то для каждой электростанции умеренных размеров придется отвести площадь минимум 4000 га. Это соответствует концепции зоны переработки отходов (фиг. 219) и предусматривает использование тепловых отходов для разведения рыбы или для других полезных целей.
Перейти на страницу: 1 2 3
|