Уже третий советский искусственный спутник Земли, выведенный на орбиту 15 мая 1958 года, был оснащен солнечной батареей. А теперь широко распахнутые крылья, на которых размещены целые солнечные электростанции, стали неотъемлемой деталью конструкции любого космического аппарата. На советских космических станциях «Салют» и «Мир» солнечные батареи в течение многих лет обеспечивают энергией и системы жизнеобеспечения космонавтов, и многочисленные научные приборы, установленные на станции.
Автоматическая межпланетная станция «Вега»
На Земле, к сожалению, этот способ получения больших количеств электрической энергии — дело будущего. Причины этого— уже упоминавшийся нами небольшой пока коэффициент полезного действия солнечных элементов. Расчеты показывают: чтобы получить большие количества энергии, солнечные батареи должны занимать огромную площадь — тысячи квадратных километров. Потребность Советского Союза в электроэнергии, например, могла бы удовлетворить сегодня лишь солнечная батарея площадью 10 тысяч квадратных километров, расположенная в пустынях Средней Азии. Сегодня произвести такое громадное количество солнечных элементов практически невозможно. Применяемые в современных фотоэлементах сверхчистые материалы — чрезвычайно дорогостоящие. Чтобы их изготовить, нужно сложнейшее оборудование, применение особых технологических процессов. Экономические и технологические соображения пока не позволяют рассчитывать на получение таким путем значительных количеств электрической энергии. Эта задача остается XXI веку.
Гелиостанция
В последнее время советские исследователи — признанные лидеры мировой науки в сфере конструирования материалов для полупроводниковых фотоэлементов — провели ряд работ, позволивших приблизить время создания солнечных электростанций. В 1984 году Государственной премии СССР удостоены работы исследователей, возглавляемых академиком Ж. Алферовым, которым удалось создать совершенно новые структуры полупроводниковых материалов для фотоэлементов. Коэффициент полезного действия солнечных батарей из новых материалов достигает уже 30%, а теоретически он может составить и 90%! Применение таких фотоэлементов позволит в десятки раз сократить площади панелей будущих солнечных электростанций. Их можно сократить еще в сотни раз, если солнечный поток предварительно собрать с большой площади, сконцентрировать и только потом подать на солнечную батарею. Так что в будущем XXI веке солнечные электростанции с фотоэлементами могут стать обычным источником энергии. Да и в наши дни уже имеет смысл получать энергию от солнечных батарей в тех местах, где других источников энергии нет.
Например, в Каракумах для сварки конструкций фермы применили разработанный туркменскими специалистами аппарат, использующий энергию солнца. Вместо того, чтобы привозить с собой громоздкие баллоны с сжатым газом, сварщики могут использовать небольшой аккуратный чемоданчик, куда помещена солнечная батарея. Рожденный солнечными лучами постоянный электрический ток используется для химического разложения воды на водород и кислород, которые подаются в горелку газосварочного аппарата. Вода и солнце в Каракумах есть возле любого колодца, так что громоздкие баллоны, которые нелегко возить по пустыне, стали ненужными.
Крупная солнечная электростанция мощностью около 300 киловатт создается в аэропорту города Феникс в американском штате Аризона. Солнечную энергию в электричество будет превращать солнечная батарея, состоящая из 7 200 солнечных элементов. В том же Штате действует одна из крупнейших в мире ирригационных систем, насосы которой используют энергию солнца, преобразованную в электричество фотоэлементами. В Нигере, Мали и Сенегале тоже действуют солнечные насосы. Огромные солнечные батареи питают электроэнергией моторы насосов, которые поднимают пресную воду, необходимую в этих пустынных местностях, из огромного подземного моря, расположенного под песками.
|